Hence, from (2), we have:

$$
\begin{array}{cl}
3 K_{1}=c_{1}+c_{1}^{*}, & 3 K_{2}=3 K_{3}^{*}=c_{2} \\
3 L_{1}=\varepsilon^{*} c_{1}+\varepsilon c_{1}^{*}, & 3 L_{2}=3 L_{3}^{*}=\varepsilon^{*} c_{2} \\
3 M_{1}=\varepsilon c_{1}+\varepsilon^{*} c_{1}^{*}, & 3 M_{2}=3 M_{3}^{*}=\varepsilon c_{2}
\end{array}
$$

Furthermore, $F_{H}(x)$ and $F(x)$ with $q=p$ are expressed as

$$
F_{H}(x)=\left(x-X_{1}\right)\left(x-X_{2}\right)\left(x-X_{2}^{*}\right)=0
$$

and

$$
F(x)=\left(x-X_{1}\right)\left(x-X_{2}\right)=0
$$

The order of $F_{H}(x)$ is higher than that of $F(x)$ with $q=p$.
In the case of $q \neq p$, the characteristic equation $F_{H}^{\prime}(x)$ was not shown by Howard but it is given by $F_{H}^{\prime}(x)=F(x) F^{*}(x)$ and then the difference equation is

$$
\begin{aligned}
P_{m+4}^{A} & +(1-p) P_{m+3}^{A}+\left(1-p+p^{2}-3 p q\right) P_{m+2}^{A} \\
& +p(1-p)(2-3 q) P_{m+1}^{A}+p^{2}\left(1-3 q+3 q^{2}\right) P_{m}^{A} \\
& =1-2 p q+p^{2} q^{2} \\
& =(\text { sum of five coefficients }) / 3
\end{aligned}
$$

In the PT method, $F_{H}^{\prime}(x)=F(x) F^{*}(x)=0$ must be solved but in the matrix method, the necessary quantities are not the roots but the coefficients in $F(x)=0$.

Thus, the matrix method is superior to the PT method.

Acta Cryst. (1983). A39, 173

Restrictions on the components of third-order tensors for site symmetry $\mathbf{3 m}$: Correction of an error in Volume IV of International Tables for X-ray Crystallography. By C. Scheringer, Institut für Mineralogie der Universität Marburg, D 3550 Marburg, Federal Republic of Germany

(Received 18 August 1982; accepted 6 September 1982)

Abstract

For site symmetry $3 m$, the covariant components 112 and 122 of the third-order tensors are not independent, and in row C38* of Table 5.5C (p. 329) of the International Tables for X-ray Crystallography [(1974), Vol. IV. Birmingham: Kynoch Press] the symbol D should twice be replaced by $-A / 2$.

The result was established by applying the $3 m$ symmetry operations which hold for the covariant components of the third-order tensor, and was confirmed by calculating the covariant components from the contravariant components. All other information is given in the $A b s t r a c t$.

Acta Cryst. (1983). A39, 173 Corrections to Table 2.2B of Volume IV of International Tables for X-ray Crystallography. By Richard E. Marsh and Kirby J. Slagle, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA

(Recived 18 October 1982; accepted 8 November 1982)

Abstract

Corrections are given for two of the coefficients for the analytical approximations to X-ray scattering factors in Table 2.2B of International Tables for X-ray Crystallography [(1974), Vol. IV. Birmingham: Kynoch Press]. For Ru^{+4} (p. 100), the coefficient b_{3} should be 0.036495 rather than 0.36495 ; for Bi^{+5} (p. 101), the coefficient b_{2} should be 0.039042 rather than 0.39042 .

All information is given in the Abstract. We thank Dr Don T. Cromer for confirming that the numbers were indeed misprinted as indicated.

